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Abstract: In the Americas, less European-looking people have on average worse 
academic outcomes than more European-looking people. According to the 
colorism model, these associations between race-related phenotype and academic-
related outcomes are due to contemporary phenotypic-based discrimination and 
not due to family-background or intergenerational factors. Previous studies have 
attempted to use sibling designs to disentangle the latter two causes from the 
effects of discrimination. We argue that admixture-regression analysis is an 
additional helpful tool for disentangling the various causes. Using a large, 
genetically-informed dataset, we created a genetically-based predictor of European 
appearance. We tested the hypothesis that European appearance will be associated 
with academic outcomes independent of genetic ancestry. We also tested the 
hypothesis that g mediated the relations between ancestry/European appearance 
and grades. We did not find evidence of this in the case of g (and most cognitive 
tests), but we did find tentative evidence in the case of parent-reported grades. 
When genetic ancestry was included in the models, European appearance was not 
significantly related to g. We also found that while g was a substantial and 
statistically significant mediator of the association between European ancestry and 
grades, this was not the case in the context of European appearance and grades. 
These results are in line with the position that cognitive inequalities in the US are 
intergenerationally transmitted, and are not the result of contemporaneous color-
based discrimination. The admixture-regression method employed here could be 
applied to different outcomes to test for evidence of phenotypic-based 
discrimination or, at least, family-background independent effects. 

Keywords: IQ, Colorism, Admixture Study, Genetic Ancestry, Appearance, G, 
School Grades, Discrimination 

1. Introduction
In the Americas, research shows that 

less European-looking and/or darker-
looking people are on average less 
successful than more European-looking 
and/or lighter-looking people. For 
example, stereotypically race-related 
phenotypes, such as skin, hair, and eye 
color, are generally associated with better 

socioeconomic outcomes (Hochschild, & 
Weaver, 2007; Hunter, 2013). Many 
sociologists attribute this association to 
phenotypic-based discrimination, also 
known as “colorism” (e.g., Dixon & Telles, 
2017). According to theorists of colorism, 
phenotypic-based discrimination is 
common in the Americas, favoring 
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individuals with stereotypical European 
phenotypes. This discrimination is 
hypothesized to result in better health, 
higher occupational and educational 
attainment, and other more positive 
outcomes for individuals with a paler or 
‘whiter’ appearance; even among those 
categorized as belonging to the same 
race/ethnicity, the paler ones will do better 
than the darker ones (Hochschild & 
Weaver, 2007; Marira & Mitra, 2013). 

Proponents of this colorism model 
frequently maintain that ‘race’ is a social 
construct according to which people are 
arbitrarily categorized based on 
geographic origins and physical 
appearance and that modern racial 
categories have originated primarily based 
on the work of eighteenth- and nineteenth-
century European naturalists and 
anthropologists (Dixon & Telles, 2017). 
‘Color,’ in contrast, is not a social construct 
but refers to gradations of physical 
appearance associated with different levels 
of skin tone (Dixon & Telles, 2017). 
Theorists of the colorism model place 
primacy on “the causal role of skin tone in 
engendering the colorism phenomenon” 
(Marira & Mitra, 2013, p. 103). Many 
theorists of colorism argue that other 
visually conspicuous, stereotypically race-
associated traits such as hair color, eye 
color, hair texture, and facial features may 
also elicit phenotypic discrimination 
(Crutchfield et al., 2022; Ryabov, 2013). 

In addition to differences in income, 
health outcomes, and occupational status, 
colorism has been invoked to explain 
academic and cognitive differences, 
including differences in attained years of 
education, grade point average, and 
academic/cognitive test scores (Hailu, 
2018; Hill, 2002; Kim & Calzada, 2019; Liu 
et al., 2022; Thompson & McDonald, 
2016). In their review, Crutchfield et al. 
(2022, p. 10) conclude that “lighter skin 
tones and more Eurocentric features were 
linked to better academic outcomes, 
including higher GPAs, additional years of 
schooling, [and] improved academic 
performance”. 

Concerning specific mechanisms by 
which individual variability in color could 
be linked to variation in academic and 
cognitive outcomes, Thompson and 
McDonald (2016, p. 6) argue for 
discrimination, including “direct 

mechanisms − educational 
encouragement, evaluation, and provision 

of learning opportunities − as well as 

indirect mechanisms − the use of 
disciplinary actions”. Crutchfield et al. 
(2022, p. 10) similarly emphasize teacher-
student relations as causes, further noting 
that “darker-skinned students face the 
greatest barriers to optimal educational 
outcomes due to differential treatment”. 
Similarly, Hannon (2014) suggests that 
adults and educators may have a light-
skin-equals-intelligence bias which, in 
turn, influences both their expectations 
and their treatment of children of different 
complexion.  

According to theorists of colorism, 
appearance-based outcome differences 
directly result from appearance-based 
discrimination. Ancestry or racial 
identification matters in so far as “racial 
classifications are determined more 
closely by how one phenotypically appears 
to belong to one race rather than strictly by 
one’s ancestors” (Hernández, 2015, p. 
684), and the same author argues that this 
is especially true in parts of Latin America. 
As Hall (2020, p. 79) notes, “in 
consideration of racism as pertains to 
colorism, ultimately such biological 
attributes as ancestry and bloodline may 
be all but completely irrelevant in the 
course of discrimination via various acts of 
colorism”. Making a related point, Harris 
(2008, p. 61) states that “[t]raditional 
racism places a higher value on ancestry 
than colorism… while colorism assigns 
people to places along a spectrum from 
dark to light, indigenous or African to 
European”. Thus, from the perspective of 
the proponents of colorism, ancestry per se 
is irrelevant.  

If color phenotypes are found to 
merely proxy the effects of genetic 
ancestry, the results would be more 
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consistent with what Abascal and Garcia 
(2022) describe as the inherited 
(dis)advantage model or what Hu et al. 
(2019) name the distributional model, and 
which we consider essentially the same 
model. According to this model, for 
various reasons, populations differ in 
traits, and these trait differences are 
transmitted vertically or 
intergenerationally. Because both racial 
appearance/color and family heritage, 
including ancestry, correlate in ancestrally 
heterogeneous populations, there is 
potential confounding between ancestry-
related family influences and 
discrimination conditioned on color 
phenotypes.  

Due to a concern for confounding, 
some research has attempted to control for 
intergenerational factors by employing 
sibling designs and measuring academic or 
educational outcomes (Bucca, 2018; 
Francis-Tan, 2016; Francis & Tannuri-
Pianto, 2012; Hu et al.,2019; Kizer, 2017; 
Marteleto & Dondero, 2016; Mill & Stein, 
2016; Rangel, 2015; Ryaboy, 2016; Telles, 
2004). The reasoning is that in recently-
admixed populations, siblings may differ 
noticeably in race-associated phenotypes 
such as skin color (see: e.g., Leite et al., 
2011), but siblings will exhibit little 
differences in genetic ancestry and no 
difference in family environment. As a 
result, with a sibling design, it should be 
possible to disentangle appearance-based 
effects from family-heritage-based ones. 
The academic outcome differences 
examined in these studies include the 
following variables: educational 
attainment (Buca, 2018; Francis-Tan, 
2016; Kizer, 2017; Marteleto & Dondero, 
2016; Mill & Stein, 2016; Rangel, 2015; 
Ryaboy, 2016), grade-point average 
(Francis & Tannuri-Pianto, 2012), age-
appropriate grade (Telles, 2004), aptitude 
test scores (Francis & Tannuri-Pianto, 
2012; Hu et al.,2019), and literacy (Mill & 
Stein, 2016).  

Most researchers either found modest 
associations between color phenotype and 
academic outcomes among siblings and 
interpreted their results as mainly 

supporting an intergenerational model 
(Francis-Tan, 2016; Mill & Stein, 2016; 
Rangel, 2015) or reported slight within-
sibship differences but interpreted these as 
support for some color-based 
discrimination (Telles, 2004). However, a 
minority of researchers reported 
substantial and statistically significant 
within-sibship effects (Marteleto & 
Dondero, 2016; Ryabov, 2016). Although 
no formal meta-analysis has been 
conducted, carefully studying all the 
outcomes shows a relatively small overall 
within-sibships effect. The results from the 
eight sibling studies involving academic 
outcomes are reviewed in Table 15 of the 
supplementary file. As seen in 16 out of 20 
effects, darker siblings have on average 
worse academic outcomes, and the mean 
effect between siblings is about 10% of the 
effect, unconditioned on family 
background, among families or in the 
population. These analyses, though, have 
been limited by the modest number of 
variables available in the case of the 
census-based studies (e.g., Francis-Tan, 
2016; Mill & Stein, 2016; Rangel, 2015; 
Telles, 2004) or non-optimal statistical 
power in the case of the longitudinal 
studies (e.g., Buca, 2018; Hu et al., 2019; 
Kizer, 2017). 

An alternative approach to testing 
colorism vs. inheritance hypotheses 
involves using admixture-regression 
designs (e.g., Connor & Fuerst, 2023; 
Fuerst, 2021; Fuerst et al., 2021). In these 
designs, recently-admixed populations are 
treated as natural experiments, and this 
admixture is used to disentangle various 
cultural, environmental, and genetic 
factors. In the present context, the design 
is employed to try to disentangle inherited 
(dis)advantages associated with racial 
appearance from non-inherited 
(dis)advantages due to, for example, 
contemporaneous discrimination. For this 
purpose, global genetic ancestry and either 
a phenotype or genetic markers of a 
phenotype are included in a regression 
analysis along with other variables. The 
objective is to determine whether racial 
appearance affects outcomes independent 
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 of global genetic ancestry. 
A theoretical path model is presented in 

Figure 1. The colorism model posits that 
discrimination based on phenotype results 
in disparities in cognitive abilities and  
other academic outcomes through the 
direct effects of discrimination on 
learning. According to this model, in 
populations with a mix of ancestries, 
academic performance is likely indirectly 
linked to genetic ancestry due to the 
correlation between racial phenotypes and 

genetics. Conversely, the inherited 
disadvantage model argues that genetic 
and cultural factors, which are tied to 
global ancestry, drive academic outcome 
disparities. Because genetic ancestry is 
correlated with racial phenotypes, 
academic related traits will tend to be 
indirectly correlated with racial phenotype 
in admixed populations. In the admixture-
regression design, global genetic ancestry 
is controlled for to account for inherited 
disadvantages. 

Figure 1.  Theoretical Model of the Association between Putative Causes 
(Discrimination vs. Inherited Disadvantage), Ancestry, Racial-Phenotype, Academic 
Outcomes, and Parental-Socioeconomic Status. 

The colorism model clearly predicts 
that racial appearance affects outcomes 
independent of genetic ancestry. If the 
model is correct, individuals with lighter 
skin, hair, and eye color should have better 
outcomes controlling for overall genetic 
ancestry. An opposite finding would be 
consistent with an intergenerational 
model, according to which traits conducive 
to better outcomes are being transmitted 
down lines of descent as indexed by 
genetic ancestry. This inheritance of traits 
could be mediated by genes, epigenetic 
factors, or culturally-inherited factors. 
Applying the admixture-regression design 
to data from the US and Brazil suggests 
that educational attainment and cognitive 
ability are primarily related to genetic 
ancestry, and are mostly unrelated to 

racial appearance (Fuerst et al., 2021; 
Kirkegaard et al., 2017; Lasker et al., 
2019). 

The admixture-regression design 
comes with a couple of assumptions that 
can be easily tested. The first assumption 
is that there is little cross-assortative 
mating for race-associated phenotype and 
the relevant traits (e.g., cognitive ability). 
In the presence of such assortment, race-
associated phenotype can become 
genetically correlated with the outcomes 
independent of ancestry (Jensen, 1998). If 
so, race-associated phenotype and 
outcomes may be associated with one 
another, independent of ancestry, for 
genetic and not discriminatory reasons. 
The second assumption is that there is no 
substantial reverse causation from 
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outcomes to race-associated phenotype; 
for example, low-prestige occupations  
 often are associated with increased 
outdoor work, sun exposure, and, 
consequently, darker color. These two 
assumptions are common to colorism 
research, but, in this design, they only 
become a concern if an association 
between race-associated phenotype and 
outcomes is found independent of genetic 
ancestry.   

The third assumption is that genetic 
ancestry and racial appearance are not 
collinear in samples. Dissociation between 
race-associated traits, especially non-
highly polygenic ones, and genetic 
ancestry is expected in admixed 
populations due to genetic crossover and 
segregation (Kim et al., 2021). The extent 
of dissociation is an empirical question. 
The final assumption is that inherited 
(dis)advantages correspond with 
differences in ancestry. This is expected 
based on a simple model of vertical 
transmission of inherited traits given an 
initial inequality between groups and 
assuming that the estimated ancestry 
corresponds with the percentage of 
ancestors of relevant parental groups. In 
admixed American groups this 
assumption holds, because genetic 
ancestry percentages can be understood in 
terms of the number of ancestors from 
different ancestry groups (e.g., Mooney et 
al., 2022).  

Most studies on the effects of racial 
appearance use single phenotypic 
measures of appearance. However, 
interviewer-rated color scales, in 
particular, have often been found to have 
modest reliability (Campbell et al., 2020; 
Hannon & DeFina, 2016; Hannon & 
DeFina, 2020). Moreover, skin color 
ratings have been found to be influenced 
by interviewer-related characteristics 
(Campbell et al., 2020; Cernat et al., 2019) 
and, additionally, the interviewer’s 
perceptions about the participants’ 
socioeconomic status (Roth et al., 2022). 
So, there are some concerns about the 
reliability and validity of skin color ratings. 
An alternative approach is to use genetic 

predictors of phenotype; they have an 
advantage in that they do not suffer from 
the problems of reverse causality and 
interviewer-related biases. Therefore, in 
this study, we created several new 
genetically-based predictors of European 
appearance. Moreover, we combine these 
predictors of skin, hair, and eye color 
through factor analysis to increase 
reliability. Afterward, we conducted 
admixture-regression analyses to test if 
European appearance was associated with 
general intelligence (g) and school grades 
independently of global genetic ancestry, 
as predicted by theorists of colorism. 
Cognitive ability was of particular interest 
because it has been found to partially 
mediate the relation between color and 
other outcomes (Campos-Vazquez & 
Medina-Cortina, 2019; Fuerst et al., 2019; 
Kreisman & Rangel, 2015). Therefore, 
cognitive ability differences may partially 
explain the relationship between color and 
socioeconomic or academic outcome 
differences. For this reason, Huddleston 
and Montgomery (2010, p. 69) note that 
“more research is needed in intragroup 
differences among Blacks and 
intelligence… Results from this research 
have huge implications for the skin tone 
hierarchy in the African American 
community”. In line with this 
recommendation, we examine the extent 
to which cognitive ability plays a mediating 
role for genetic ancestry and grades.  

As we already noted, studies which 
have used sibling designs overall show a 
modest association between European 
appearance and academic outcomes. 
Based on these results, we hypothesized 
that European appearance will show an 
association with both g and grades in 
regression models which also include 
genetic ancestry. Moreover, meta-analyses 
indicate that general mental ability and 
school grades are highly correlated (e.g., 
Roth et al., 2015), so we hypothesized that 
the relation between both European 
appearance and genetic ancestry and 
between school grades will be strongly 
mediated by g.  
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2. Data and methods
2.1. Sample 
The Adolescent Brain Cognitive 

Development Study (ABCD) is a 
collaborative longitudinal project 
involving 21 collection sites across the US. 
It was created to research the 
psychological and neurobiological bases of 
human development. At baseline, around 
11,000 9-10-year-old children were 
sampled, mostly from public and private 
elementary schools. A probabilistic 
sampling strategy was used to create a 
broadly representative sample of the 
population for this age group. We used the 
3.0 data release. 

For the main analyses, we focused on 
the 3814 (with grades) to 4459 (with g 
scores) individuals who were parentally 
identified as Black, Hispanic, Native 
American, or Other; we also included 
individuals who were marked as belonging 
to multiple race/ethnic categories. The 
choice to focus on these ethnic groups was 
influenced by Marira and Mitra (2013), 
who note that “the most rigorous research 
concerning the nexus of colorism and 
labor market outcomes has been 
conducted on African American and 
Latino populations in the United States” 
(p. 104). Although there is little ancestry-
related color variability among non-
Hispanic White Americans, we also ran the 
analyses including this group; we 
relegated most of these results to the 
supplementary file.  We excluded 
anyone who was parentally identified as 
East Asian, South Asian, or Pacific 
Islander primarily because there were 
potential problems with reliable and 
interpretable East and South Asian 
ancestry estimates. Among South Asians, 
admixture estimates capture both recent 
and archaic Indo-European admixture, 
rendering the interpretation of these 
estimates unclear. Moreover, since we 
were unable to create a separate Pacific 
Islander ancestry component due to a lack 
of reference samples, East Asian and 
Pacific Islander ancestry was confounded. 
In contrast, the interpretation of 
European, African, and Amerindian 

admixture among Black, Hispanic, and 
Native American populations is 
unambiguous since this admixture 
occurred within the last 500 years, 
following the Age of Discovery and the 
settling of the New World.  

2.2. Variables 
A number of theoretically relevant 

variables were used. They are described in 
the sections below. 

2.2.1 Admixture estimates 
The ABCD Research Consortium 

conducted the imputing and genotyping 
using Illumina XX. Quality control was 
performed using PLINK 1.9; a total of 
516,598 genetic variants survived the 
quality control. When computing 
admixture estimates, we used only directly 
genotyped, bi-allelic, autosomal SNP 
variants (494,433 before, 493,196 after 
lifting). We filtered variants in the 
reference population dataset to reduce 
bias from sample non-representativeness. 
Variants were pruned for linkage 
disequilibrium at the 0.1 R² level using 
PLINK 1.9 (--indep-pairwise 10000 100 
0.1), leaving 99,642 variants after pruning. 
Next, target samples from ABCD were 
merged with reference population data 
from 1000 Genomes and HapMap. We 
excluded the following 1000 Genomes and 
HGDP reference populations: Adygei, 
Balochi, Bedouin, Bougainville, Brahui, 
Burusho, Druze, Hazara, Makrani, 
Mozabite, Palestinian, Papuan, San, 
Sindhi, Uygur, and Yakut. These 
populations were excluded because either 
they were overly admixed or because the 
individuals in the ABCD sample lacked 
significant portions of these ancestries (as 
in the case of Melanesians and San). The 
ABCD target sample was then split into 50 
random subsets (of approximately 222 
persons each) and merged sequentially 
with the reference data. Repeat subsetting 
was done to avoid skewing the admixture 
algorithm to European ancestry, as this 
ancestry was dominant in the ABCD 
sample. Next, we performed cluster 
analysis and estimated ancestry based on a 
k = 5 solution (European, Amerindian, 
African, East Asian, and South Asian 
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ancestries), as this provided the most 
comprehensive yet also parsimonious 
model of the US population and captured 
all predominant ancestral backgrounds in 
the US population. Our European, African, 
and Amerindian estimates perfectly 
correlated with the estimates provided in 
the ABCD dataset (genetic_af_european, 
genetic_af_african, and 
genetic_af_european). As ABCD does not 
clearly document the construction of these 
estimates, we used our own ancestry 
estimates instead. 

2.2.2. General cognitive ability, 11 
cognitive tests, and NIHTBX fluid and 
crystal composite scores   

The baseline ABCD data contained the 
following cognitive tests: Picture 
Vocabulary, Flanker, List Sorting, Card 
Sorting, Pattern Comparison, Picture 
Sequence Memory, Oral Reading 
Recognition, Wechsler Intelligence Scale 
for Children’s Matrix Reasoning, the Little 
Man Test (efficiency score), the Rey 
Auditory Verbal Learning Test (RAVLT) 
immediate recall, and RAVLT delayed 
recall. The first seven of these are from the 
NIH Toolbox® cognitive battery. For 
details about these measures, see 
Thompson et al. (2019). In addition, ABCD 
provides a precomputed measure of 
crystallized cognitive ability (based on the 
Picture Vocabulary Test and the Oral 
Reading Recognition Test) and a measure 
of fluid cognitive ability (based on Flanker, 
List Sorting, Card Sorting, Pattern 
Comparison, and Picture Sequence 
Memory) measures. Details of these 
measures are provided by Akshoomoff et 
al. (2014). The crystallized ability subtests 
are said to be more dependent on learning 
experience and “represent accumulated 
store of verbal knowledge and skills, and 
thus are more heavily influenced by 
education and cultural exposure, 
particularly during childhood” 
(Akshoomoff, 2014, p. 120). 

We computed g scores via the multi-
group confirmatory factor-analytic 
method detailed in Fuerst et al. (2021). In 
this earlier publication, we outputted the g 

scores from the best-fitting and, 
additionally most-parsimonious model. In 
this case, g alone was found to explain the 
mean parentally-identified race and 
ethnicity (henceforth ‘race and ethnicity’) 
differences. Scores were standardized (M 
= 0.00; SD = 1.00) on the total sample of 
10,370 children.  

2.2.3. Grades 
Parents were asked: “What kind of 

grades does your child get on average?” (1 
= As /2 = Bs /3 = Cs / 4 = Ds / 5 = Fs). We 
recoded this variable using a 4-point scale 
as is commonly used in the US (with 4.0 
representing an A, 3.0 representing a B, 
etc.), and then standardized the scores (M 
= 0.00; SD = 1.00). These data were 
available for N = 9128 for the Black-
Hispanic-Other-White sample and N = 
3814 for the Black-Hispanic-Other 
sample. 

2.2.4. Child US-born and immigrant 
family  

Parents reported if the child was born 
in the United States. This variable is 
recoded as “1” if the child was born in the 
United States and “0” for all other 
responses. Additionally, parents reported 
if any family members (including the 
child’s maternal or paternal grandparents) 
were born outside of the United States. 
This variable, immigrant family, was also 
recoded as “1” if any family member was 
born outside the United States and “0” for 
all other responses.  

2.2.5. Sex 
Parents identified the sex of the 

children as female or male. Sex was 
recoded as “1” for females, and “0” for 
males.   

2.2.6. Age 
Age was calculated starting with age in 

months at the time of the interview 
("interview age”) divided by 12.  

2.2.7. General socioeconomic status 
(SES) 

Using Principal Components Analysis 
(PCA), we computed a general factor of 
SES based on seven substantially 
correlated indicators, which explained 
42% of the variance. The loadings on the 
first factor were: financial adversity (.31), 
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area deprivation index (.49), 
neighborhood safety protocol (.31), 
parental education (.54), parental income 
(.66), parental marital status (.43), and 
parental employment status (.23). We 
used the PCA mixdata R package (Chavent 
et al., 2014) to analyze these data, since 
this algorithm handles mixed categorical 
and continuous data. Fuerst et al. (2021) 
provide more details on this variable. 

2.2.8. Predicted European appearance 
As interviewer-rated phenotype is often 

unreliable and influenced by interviewer 
characteristics and as we only had 
phenotypic data for a small subset of the 
sample, we created genetic predictors of 
phenotype for analysis of the main sample. 
Specifically, we used tanning ability and 
hair pigment polyfun scores from 
Weissbrod et al. (2022; note that the SNP 
weights for these phenotypes were first 
published at the beginning of 2020) and 
skin color, hair color, and eye color 
probabilities calculated using the 
HIrisPlex-S web application 
(https://hirisplex.erasmusmc.nl/). To 
create a genetic index of European 
appearance, we employed PGSs developed 
by Weissbrod et al. (2020; 2022) for 
tanning propensity and hair pigment. 
These were created by applying genome-
wide functionally-informed fine-mapping 
to individuals of British descent in the UK 
Biobank. These scores likely better 
estimate causal effects, thus reducing the 
likely adverse effects on between-
population portability stemming from the 
impacts of linkage phase disequilibrium 
differences between populations 
(Weissbrod et al., 2020; Weissbrod et al., 
2022). 

The HIrisPlex-S web application, 
developed for use by the US Department of 
Justice in forensic investigations, and 
validated on thousands of people from 
around the world (Chaitanya et al., 2018; 
Walsh et al., 2017; Walsh et al., 2014), 
imputes probabilities for skin, hair, and 
eye color based on 41 SNPs that are 
functionally related to what could broadly 

be termed color traits (of these 36 were for 
skincolor, 22 for hair color, and six for 
eyecolor, with overlap). HIrisPlex-S gives 
probabilities that a given individual 
occupies a level associated with the 
Fitzpatrick Scale skin type (i.e., Type I, 
scores 0–6, “palest, freckles”; Type II, 
scores 7–13; Type III-IV (combined), 
scores 14–27; Type V, scores 28–34; Type 
VI, scores 35–36, this being associated 
with “deeply pigmented dark brown to 
darkest brown”). We weighted the medium 
score of each Type (e.g., Type I = 3) by the 
probability of each type to create a singular 
color measure. For hair color, HIrisPlex-S 
gives probabilities of light as opposed to 
dark hair color. For eye color, HIrisPlex-S 
gives probabilities of blue, intermediate, 
and dark eye color. We summed the blue 
and intermediate colors to create the light 
eye color probability. 

The five phenotypic predictor scores, 
all based on functionally-informed SNPs, 
overlapped due to pleiotropy, meaning 
that different traits are co-influenced by a 
common set of genes. Because of these 
pleiotropic relationships, we were able to 
use factor analysis, yielding summary 
scores. Specifically, we factor-analyzed the 
tanning ability, hair pigment, skin color, 
hair color, and eye color scores, using the 
built-in R command factanal. This 
command function fits a common factor 
model using maximum likelihood 
estimation. A single-factor model 
explained 81% of the variance, and the 
loadings were: tanning ability .96, hair 
pigment .98, skin color .89, hair color .88, 
and eye color .79. We centered and 
standardized these scores in the full 
sample of 10,370 children. The correlation 
matrices are shown in Table 1.  

2.2.9. European Phenotype 
 The ABCD twin data contained race-

related phenotypic ratings for N = 239 
individuals (after removing one MZ twin 
from each MZ twin pair). There were two 
ordinal-scale ratings for each phenotype. 
The phenotypes were as follows:  

(1) Hair color (“zyg_ss_t1_hair_dark”; 

https://hirisplex.erasmusmc.nl/


Natural Systems of Mind, 2023, Volume 3, № 1, p. 23 -49. 
___________________________________________________________

31

Table 1. Correlation matrices for European genetic ancestry, predicted European 
appearance, and genetically predicted hair, skin, and hair color scores. 

a. Black-Hispanic-Other sample (N =4459)

 Variable M SD 1 2 3 4 5 6 
1. European
ancestry 

0.44 0.28 

2. European
appearance 

-0.89 0.79 .84** 

[.83, .85] 
3. UKBB
tanning ability 

-0.85 0.87 .85** .95** 

[.84, .86] [.95, .96] 
4.UKBB hair 
pigment 

-0.88 0.80 .82** .99** .92** 

[.81, .83] [.99, .99] [.92, .92] 
5. HirisPlex
skin color 

-0.82 0.81 .67** .82** .78** .77** 

[.66, .69] [.81, .83] [.76, .79] [.76, .79] 
6. HirisPlex
hair color 

0.21 0.29 .64** .84** .75** .80** .71** 

[.62, .66] [.83, .84] [.73, .76] [.79, .81] [.69, .72] 
7. HirisPlex
eye color 

0.13 0.26 .52** .71** .59** .68** .63** .73** 

[.50, .54] [.69, .72] [.57, .61] [.67, .70] [.61, .65] [.71, .74] 

b. Black-Hispanic-Other-White sample (N =10,370)

Variable M SD 1 2 3 4 5 6 
1. European
ancestry 

0.75 0.33 

2. European
Appearance 

0.00 1.00 .89** 

[.89, .89] 
3. UKBB
tanning ability 

0.00 1.00 .89** .97** 

[.89, .89] [.96, .97] 
4. UKBB hair
pigment 

0.00 1.00 .88** .99** .94** 

[.88, .89] [.99, .99] [.94, .95] 
5. HirisPlex
skin color 

0.00 1.00 .80** .90** .87** .87** 

[.79, .80] [.89, .90] [.87, .88] [.86, .87] 
6. HirisPlex
hair color 

0.53 0.39 .77** .89** .82** .87** .77** 

[.76, .78] [.89, .89] [.82, .83] [.86, .87] [.77, .78] 
7. HirisPlex
eye color 

0.44 0.41 .66** .80** .70** .78** .74** .79** 

[.65, .67] [.79, .80] [.69, .71] [.77, .79] [.73, .75] [.79, .80] 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square 
brackets indicate the 95% confidence interval for each correlation. The confidence interval is a plausible 
range of population correlations that could have caused the sample correlation. * indicates p < .05. ** 
indicates p < .01. 
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“zyg_ss_t2_hair_dark”) which was rated 
as “0” = light, “1” = medium, “2” = dark, 
and which we reverse-coded.  
(2) Hair pigment (“zyg_ss_t1_hair_col”; 
“zyg_ss_t2_hair_col”) which was rated as 
“0” = light blond, “1” = blond, “2” = red, “3” 
= brown, “4” = black, and which we 
reverse-coded.  

(3) Eye color (“zyg_ss_t1_eye_col”; 
“zyg_ss_t2_eye_col”); this scale was 
originally rated as “0” = blue, “1” = gray, 
“2” = green, “3” = hazel, “4” = brown, and 
we recoded this scale as follows: light 
(blue, grey, and green) = “1” and dark 
(hazel & brown) = “0”.  

(4) Hair form, based on the sum of 
scores from hair texture 
(“zyg_ss_t1_hair_txtr”; 
“zyg_ss_t2_hair_txtr”), which was rated 
as “0” = coarse, “1” = medium, “2” = fine, 
and hair type (“zyg_ss_t1_hair_type”; 
“zyg_ss_t2_hair_type”) which was rated 
as “0” = curly, and “1” = wavy, “2” = 
straight.  

Higher values were associated with a 
more typical European hair form.     
 Since we had data from two raters, we 
were able to compute reliability estimates. 
Internal consistency coefficients (ICC) 
estimates and their 95% confidence- 

intervals were calculated using the Psych 
statistical package (Revelle & Revelle, 
2015). These values were based on a mean 
rating (k = 2), absolute-agreement, one-
way random model (i.e., ICC1k; Koo & Li, 
2016). The one-way model used 
phenotypic data sourced from two data 
collection sites (02 and 19). The one-way 
model is recommended in cases such as 
these (Koo & Li, 2016). Hair color, hair 
pigment, eye color, and hair form had 
average reliabilities [and confidence 
intervals] of .67 [.59, .73], .68 [.82, .88], 84 
[.80, .87], and .89 [.86, .91], respectively. 
These values indicate moderate to good 
reliability (Koo & Li, 2016), so we used the 
average of ratings in subsequent analyses. 
Moreover, the four phenotype scores were 
strongly correlated with European 
ancestry (rs = .44 to .57); the correlation 
matrices are shown in Table 2.    
 To create rated-European phenotype 
scores, we factor-analyzed the scores using 
the R command factanal. A single-factor 
model explained 35% of the variance, and 
the loadings were as follows: hair color .46, 
hair pigment .74, eye color .71, and hair 
form .36. We centered and standardized 
these scores on the subsample of 239 
individuals with phenotypic data.  

 Table 2. Correlation matrices for European genetic ancestry, genetically predicting 
European appearance, phenotypic European appearance, and specific phenotypes in the 
twin sample with phenotypic ratings (N = 239). 

 Variable M SD 1 2 3 4 5 6 
1. European ancestry

0.85 0.21 

2. Predicted
European appearance 

0.00 1.00 .79** 

3. Phenotypic
European appearance 

0.00 1.00 .71** .76** 

4. Phenotype: light hair
0.00 1,00 .44** .48** .54** 

5. Phenotype: hair pigment
0.00 1.00 .56** .61** .87** .34** 

6. Phenotype: light eyes
0.00 1.00 .57** .64** .83** .32** .53** 

7. Phenotype: fine hair form
0.00 1.00 .53** .43** .43** .21** .26** .25** 

Note. M and SD are used to represent mean and standard deviation, respectively. * indicates p < .05. ** 
indicates p < .01. N = 239. 
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The correlation between our genetically 
predicted European appearance and rated 
European phenotype was r = .76, which 
can be regarded as high-magnitude 
(Gignac & Szodorai, 2016). Notably this 
correlation was higher than that with 
global ancestry at r = .71, as would be 
expected if our variable predicted physical 
appearance above and beyond genetic 
ancestry.  The ICCs for genetically 
predicted European appearance and rated 
European phenotype (N = 239) were .80 
and .89 for single and average raters, 
respectively. For the Black-Hispanic-
Other subsample (N = 88), these ICCs 
were .75 and .86, respectively. These 
magnitudes are usually interpreted to 
mean good reliability (Koo & Li, 2016). 

2.2.10. Race and ethnicity fraction and 
Hispanic 

Based on the 18 questions asking about 
the child’s race, we created four dummy 
race and ethnicity variables: Black, White, 
Native American, and Not Otherwise 
Classified (NOC).  

The NOC category included those 
identified as “Other Race,” “Refused to 

answer,” or “Don’t Know”. Asians and 
Pacific Islanders were previously excluded 
and so were not included in the NOC 
category. We transformed these variables 
into interval race and ethnicity variables. 
These were calculated as the value selected 
for each of the four groups (0 or 1) over the 
total number of responses (0 to 4). Thus, 
individuals were assigned four race and 
ethnicity fractions ranging from 0 to 1. We 
used the White interval variable as the 
benchmark group. As a result, this variable 
is dropped from the regression models. As 
with ancestry, we leave these variables 
unstandardized so that the 
unstandardized beta coefficients for race 
and ethnicity fraction can be interpreted as 
a change in 100 percent race and ethnicity 
identity for every standardized unit of the 
dependent variable. We further create a 
variable for Hispanic ethnicity, coded as 
“1” for “Hispanic” and “0” for non-
Hispanic. The correlation matrices for the 
predicted European appearance, genetic 
ancestry, and race and ethnicity variables, 
based on the Black-Hispanic-Other-White 
sample, are shown in Table 3.

 Table 3. Correlation matrices for predicted European appearance, genetic ancestry, 
and race and ethnicity in the Black-Hispanic-Other-White sample (N = 10,370). 

Variable M SD 1 2 3 4 5 6 7 8 

1. Predicted
European 
appearance 

0.00 1.00 

2. European
ancestry 

0.75 0.33 .89** 

3. African
ancestry 

0.18 0.31 -.78** -.89** 

4. Amerindian
 ancestry 

0.06 0.14 -.32** -.31** -.13** 

5. frac White 0.73 0.43 .77** .86** -.83** -.13** 

6. frac Black 0.20 0.38 -.72** -.83** .95** -.17** -.82**  

7. frac Native
 American 

0.02 0.11 -.03** -.03** -0.01 .08** -.18** -.05** 

8. frac NOC 0.06 0.23 -.21** -.19** -.03** .49** -.41** -.13** -.04** 

9. Hispanic 0.19 0.40 -.27** -.22** -.12** .76** -.07** -.17** .04** .38** 

Note. M and SD are used to represent mean and standard deviation, respectively. * indicates p < .05. 
** indicates p < .01. 

2.2.11. eduPGS 
To create educational polygenic scores 

(PGS), we scored the genomes using 
PLINK v1.90b6.8. We used the multi-trait 

analysis of genome-wide association study 
(MTAG) eduPGS SNPs (N = 8,898 variants 
in this sample) to compute eduPGS, and 
we based ourselves on the results from the 
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genome-wide association study (GWAS) of 
Lee et al. (2018). These scores were based 
on educational attainment (N = 1,131,881), 
cognitive ability (N = 257,841), hardest 
math class taken (N = 430,445), and 
mathematical ability (N = 564,698) (Lee et 
al., 2018). Previous research has shown 
these scores to have good predictive 
validity in European populations, and 
reasonable trans-ethnic predictive validity 
in Hispanic, and African-American 
populations (Fuerst et al., 2021; Lasker et 
al., 2019). 

2.3. Analysis 
2.3.1 Validation of European 

Phenotypic Predictor 
 To validate our genetic predictor of 

European appearance, we ran two 
analyses. First, we ran regression models 
in which we predicted parentally-
identified-child-racial category (White = 
“1”; non-White = “0”) based on our 
European phenotypic predictor, with 
European genetic ancestry controlled. 
While racial classifications in the US are 
primarily based on perceived continental 

ancestry (Harris, 2008; Hall, 2020), skin 
color has been found to influence the 
classifications independently of ancestry 
(Schachter, Flores & Maghbouleh, 2021). 
Thus, we expected European appearance 
to predict the identified race of the child, 
independently of genetic ancestry.   

In line with the recommendation of 
Heeringa and Berglund (2021), we used a 
linear mixed-effects model rather than 
ordinary least squares. Linear mixed-
effects involve partially decomposing the 
residual term into linear random effects 
components linked to the data-collection-
site identifiers and same-family identifiers 
within the sample. This allows for the 
possibility of error term correlations 
within data collection sites or within 
families with multiple tested individuals 
(see: Heeringa & Berglund, 2021). This 
specification replicates that which was 
used by the ABCD Data Exploration and 
Analysis Portal (DEAP), and so the use of 
this multilevel model also aids in 
replication. To run these analyses, we 
employed the lmer command from the 

lme4 package (Bates, Mächler, Bolker, & 
Walker, 2015). 

As noted in Section 2.2.9 our European 
phenotype predictor had excellent 
reliability. So, second, using the 
subsample for which we had phenotypic 
ratings, we examine the degree to which 
our genetically predicted European 
appearance variable predicted rated 
European phenotype independently of 
genetic ancestry and, in supplemental 
analyses, race and ethnicity. We expect our 
appearance predictor to have validity as a 
predictor of rater reported appearance 
above and beyond global genetic ancestry. 
Since, we only had two sample sites and 
since we dropped one of two MZ twins we 
ran ordinary least square (OLS) for 
simplicity. However, we also report results 
based on linear mixed-effects, controlling 
for site, in Tab 2 of the supplementary file. 

2.3.2 Main regression analyses 
We next ran a series of regression 

analyses, using mixed-effects models, in 
which g or parentally-reported grades was 
the dependent variable and European 

appearance was the main independent 
variable. We ran five models, which 
sequentially added (parentally-identified) 
racial and ethnic category, SES, and 
ancestry, and both ancestry and SES to the 
initial regression model. The expectation 
was that if the colorism model was correct, 
predicted European appearance would 
retain validity when we added race and 
ethnicity, SES, and ancestry. In running 
these models, we followed a methodology 
similar to that of Telles and Paschel (2014) 
and Telles, Flores, and Urrea-Giraldo 
(2015), except that we also added genetic 
ancestry to the models. So, we followed 
established models of analyzing these 
kinds of data.  

For the analyses with g (and also 
cognitive subtests), we used the mixed-
effects model discussed above. However, 
parent-reported school grades showed a 
strong censoring effect (A = 49%; B = 36%; 
C to F = 15%), with many individuals 
receiving the highest grade of an A and the 
distribution not being normal. Therefore, 
we also ran analyses for grades using tobit 

https://www.biorxiv.org/content/10.1101/2021.05.14.444173v3.full#ref-9
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regression, which adjusts for censored 
data, since censoring can induce effects 
resembling model misspecification. For 
these analyses, we used the tobit function 
in the AER package (Kleiber et al., 2020). 
No package for multilevel tobit regression 
is available for R, so for these tobit 
regression analyses we dropped the site 
and family random effects and included 
dummy variables for recruitment site 
instead.  This is a suboptimal method, so 
we ran all analyses using both the standard 
mixed-effects model based on linear 
regression and the tobit regression models 
and compared the results.  We also 
assessed the degree of collinearity for the 
European appearance variable, using the 
variance inflation factor (VIF) statistic. We 
used the car statistical package (Fox and 
Weisberg, 2011) to calculate the values of 
VIF. 

2.3.3 Causal mediation analyses 
Following the suggestion of 

Huddleston and Montgomery (2010), we 
ran causal mediation analysis using the 
mediation R package (Tingley et al., 
2013). This package estimates both the 
mediation effect and the proportion of the 
effect that is directly causally mediated. 
We ran analyses with g as a mediator of the 
relation between grades and either 
European ancestry or European 
appearance. We ran these analyses both in 
the Black-Hispanic-Other-White sample 
and the Black-Hispanic-Other sample. 
European ancestry, European appearance, 
sex, age, child US-born, immigrant family, 
race and ethnicity, and interview site are 
included as covariates in all of the 
mediation analyses. Since this package 
cannot handle two levels of random 
effects, we dropped the family level from 
the analyses when using the mixed-effects 
model. We alternatively ran the models 
using linear regression for g and tobit 
regression for grades, in which case site 
effects were included as dummy variables.  

2.3.4 Robustness analyses  
Finally, as a robustness check, we reran 

the main regression analyses using the 
UKBB tanning and the HIrisPlex skin color 
variables instead of European appearance. 

This was done because theorists of 
colorism put the causal role of skin-color-
based discrimination central (Marira & 
Mitra, 2013), and it may be that our 
European appearance variable is 
obscuring the relation between skin color 
and academic outcomes by also taking into 
account hair and eye color. We also reran 
the main analyses on the Hispanic and 
Black subsamples independently to 
determine if effects were present in 
subgroups. This was done because 
researchers using sibling designs have 
reported significant appearance-related 
effects among Hispanics (Ryaboy, 2016) 
without these effects being present in the 
full sample (Kizer, 2017). It may be that 
there are appearance-related effects 
among Hispanics or Blacks but not in the 
combined sample.  

Additionally, we ran the analyses on all 
eleven cognitive subtests used to create g 
scores, and the NIH toolbox crystallized 
and fluid ability scales since it is possible 
that discriminatory effects will be localized 
on certain measures of cognitive ability. 
Differences might be expected to be more 
pronounced on crystallized measures since 
crystallized intelligence is “more heavily 
influenced by education and cultural 
exposure” (Akshoomoff, 2014, p. 120) and 
since theorists of colorism argue that 
colorism will manifest as a barrier to 
learning opportunities. 

We further tested for possible cross-
trait assortative mating by examining if 
eduPGS scores predict European 
appearance, tanning, and color 
independent of European ancestry. If 
there was cross-trait assortative mating, 
we would expect a substantial effect of 
eduPGS on these traits independent of 
European genetic ancestry. Norris (2019) 
reports polygenic evidence of assortative 
mating for education among Latin-
American populations, while Zou et al. 
(2015) report evidence of assortative 
mating on European appearance. So, it is 
plausible that there was simultaneous 
assortative mating on both European 
appearance and education. While 
generally not mentioned by theorists of 
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colorism, cross-trait assortative mating 
has long been hypothesized to explain 
advantages associated with European 
appearance in admixed American 
populations (e.g., Jensen, 1998; Reuter, 
1917; Valenzuela, 2011). 

2.4. Data and code 
The R-code and additional model 

outputs are included in the supplementary 
file, available at Open Science Frame: 
https://osf.io/jqkns/. ABCD data are 
available to qualified researchers at: 
https://nda.nih.gov/abcd. 

3. Results
3.1. Validation 
Table 4 shows the regression results for

 predicting White racial and ethnic 
categorization. Model 1 shows the results 
for the Black-Hispanic-Other sample, 
while Model 2 shows the results for the 
Black-Hispanic-Other-White sample. 
Model 1a and Model 2a include only 
European ancestry as the predictor, while 
Model 1b and Model 2b include all non-
European ancestries as predictors. We 
note that our genetically-predicted 
European appearance variable predicts 
participant race and ethnicity 
independently of genetic ancestry. The 
effect is small, as expected, because race 
and ethnicity in the US are mostly 
understood in terms of ancestry.

 Table 4. Regression models with genetically-predicted European appearance as 
the key independent variable and white racial and ethnic categorization as the dependent 
variable using the Black-Hispanic-Other sample (Model 1) and the Black-Hispanic-Other-
White sample (Model 2). 

Model 1a: 
Race/ethnicity, 
Appearance, & 
European 
Ancestry 

Model 1b: 
 Race/ethnicity, 
Appearance, & 
non-European 
Ancestries 

Model 2a: 
Race/ethnicity, 
Appearance, & 
European Ancestry 

Model 2b:  
Race/ethnicity, 
Appearance, & 
non-European 
Ancestries 

Predictors b P b P b P b P 

(Intercept) -0.10 0.005 0.76 <0.001 -0.14 <0.001 0.94 <0.001 

(0.04) (0.03) (0.02) (0.02) 

Predicted 
European 
appearance 

0.03 0.004 0.02 0.017 0.02 <0.001 0.02 <0.001 

(0.01) (0.01) (0.00) (0.00) 

European 
ancestry 

0.88 <0.001 1.07 <0.001 

(0.03) (0.01) 

Child 
US Born 

0.04 0.071 0.04 0.124 0.05 0.001 0.04 0.003 

(0.02) (0.02) (0.01) (0.01) 

Immigrant 
Family 

0.14 <0.001 0.06 <0.001 0.07 <0.001 0.02 <0.001 

(0.01) (0.01) (0.01) (0.01) 

African 
ancestry 

-0.92 <0.001 -1.13 <0.001 

(0.03) (0.01) 

Amerindian 
ancestry 

-0.35 <0.001 -0.67 <0.001 

(0.04) (0.02) 
East Asian 
ancestry 

-0.96 <0.001 -0.81 <0.001 

(0.13) (0.08) 

South Asian 
ancestry 

-1.14 <0.001 -1.00 <0.001 

(0.21) (0.13) 

https://nda.nih.gov/abcd


Natural Systems of Mind, 2023, Volume 3, № 1, p. 23 -49. 
___________________________________________________________

37

Random Effects  

σ2 0.02 0.01 0.01 0.01 

τ00 0.08 site_id_l:rel_famil

y_id

0.07 site_id_l:rel_family

_id

0.04 site_id_l:rel_family_id 0.03 site_id_l:rel_family

_id

0.00 site_id_l 0.01 site_id_l 0.00 site_id_l 0.00 site_id_l 

ICC 0.85 0.84 0.8 0.79 

N 22 site_id_l 22 site_id_l 22 site_id_l 22 site_id_l 

3863 rel_family_id 3863 rel_family_id 8672 rel_family_id 8672 rel_family_id 

Observations 4459 4459 10370 10370 

Marginal R2 / 
Conditional 
R2 

0.464 / 0.918 0.527 / 0.925 0.739 / 0.948 0.754 / 0.948 

Note: Beta coefficients (b) and p-values (p) from the mixed-effects models, with recruitment site and family 
common factors treated as random effects are shown. The values in parentheses are standard errors. The 
marginal and conditional R2s of the mixed-effects model are shown at the bottom. ICC = Intraclass 
Correlation Coefficient.

 Next, Table 5 shows the regression 
results for predicting interviewer rated 
phenotype based on genetically predicted 
European appearance in the small twin 
sample that had phenotypic ratings. Model 
1 shows the results without genetic 
ancestry, while models 2a and 2b add 
European ancestry and non-European 
ancestries, respectively. We note that our 
genetically predicted European 

appearance variable predicts interviewer-
rated European phenotype over and above 
genetic ancestry. The results, for the 
equivalent Model 2a, are substantially the 
same when we subset to the 88 Blacks, 
Hispanics, and Others in the twin sample 
(Predicted European appearance b = .59; 
S.E. = .11) or when we additionally include 
parental reported race in the models.  

 Table 5. Regression models with genetically predicted European appearance as the 
key independent variable and interviewer-rated phenotype as the dependent variable. 

Model 1:  
Phenotype ~ 
Predicted 
Phenotype 

Model 2a: 
 Phenotype ~ Predicted 
Phenotype w/European 
ancestry 

Models 2b:  
Phenotype ~ Predicted 
Phenotype w/non-
European Ancestries 

Predictors b P b P b P 

(Intercept) 0.04 
(0.06) 

0.469 -1.09 
(0.27) 

<0.001 0.28 
(0.09) 

0.001 

European 
appearance 

0.76 
(0.04) 

<0.001 0.54 
(0.07) 

<0.001 0.53 
(0.07) 

<0.001 

Sex -0.09 
(0.08) 

0.286 -0.08 
(0.08) 

0.309 -0.07 
(0.08) 

0.360 

European 
ancestry 

1.32 
(0.31) 

<0.001 

African 
ancestry 

-1.14 
(0.33) 

0.001 

Amerindian 
ancestry 

-1.61 
(0.45) 

<0.001 



Shibaev V. & Fuerst John G.R. A Genetically Informed Test of the Cognitive-Colorism Hypothesis. 

____________________________________________________________________________ 

38

East Asian 
ancestry 

-2.18 
(3.10) 

0.483 

South Asian 
ancestry 

-11.22 
(13.97) 

0.423 

Observations 239 239 239 

R2 / 
R2 adjusted 

0.584 / 0.581 0.614 / 0.610 0.619 / 0.610 

Notes: Beta coefficients (b) and p-values (p) from the OLS regression models. The values in parentheses are 
standard errors. The marginal and conditional R2 of the mixed effects model are shown at the bottom.  

3.2 Main results 
Table 6 shows the main results with g 

as the dependent variable for the Black-
Hispanic-Other sample. Its Model 1 
reveals that the relation between predicted 
European appearance and g is statistically 
significant. When we add race and 
ethnicity in Model 2, this relation is 
reduced but still statistically significant. 
When we add SES, in Model 3, the effect is 
further reduced but still statistically 
significant. However, when we add genetic 
ancestry in Model 4a (without SES) and 4b 
(with SES) the relation becomes 
statistically non-significant. The results for 
the Black-Hispanic-Other-White sample, 
provided in the supplementary material, 
also reveal no statistically significant effect 
when adding European ancestry in Model 
4a (without SES) and 4b (with SES).  

Table 7 shows the main results, again 
for the Black-Hispanic-Other sample, 
using grades as the dependent variable. In 
this table, tobit regression is used. Model 1 

reveals that the relation between predicted 
European appearance and grades is 
statistically significant. When we add race 
and ethnicity in Model 2, this relation is 
reduced but is still statistically significant. 
When we add SES, in Model 3, the effect is 
further reduced but is still statistically 
significant. Adding genetic ancestry in 
Models 4a and 4b (with SES) does not 
change this.  
 However, in the final Model (4b), the 
relation is only marginally statistically 
significant (p = 0.042). In contrast, the 
results for the Black-Hispanic-Other-
White sample, provided in the 
supplementary material, show no 
statistically-significant effect of European 
appearance in Model 4a (without SES) and 
4b (with SES). Moreover, the effects of 
European appearance in the Black-
Hispanic-Other-White sample are trivial. 
Thus, the effect of European appearance 
on parent-reported grades only shows up 
in the Black-Hispanic-Other sample.

 Table 6. Regression results for the effect of predicted European appearance on g in 
the Black-Hispanic-Other sample.  

M1: g ~ 
European 
appearance 

M2: g ~ 
European 
appearance + 
race and 
ethnicity 

M3: g ~ 
European 
appearance + 
race and 
ethnicity + SES 

M4a: g ~ 
European 
appearance + 
race and 
ethnicity + 
European 
ancestry 

M4b: g ~ 
European 
appearance + 
race and 
ethnicity + 
European 
ancestry + SES 

Predictors b P b P b P b P b P 

Intercept 0.31 
(0.25) 

0.22 0.42 
(0.26) 

0.11 0.38 
(0.25) 

0.14 -0.62 
(0.28) 

0.03 -0.28 
(0.27) 

0.30 

age -0.05 
(0.02) 

0.03 -0.05 
(0.02) 

0.03 -0.05 
(0.02) 

0.03 -0.04 
(0.02) 

0.06 -0.05 
(0.02) 

0.04 
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sex 0.02 
(0.03) 

0.45 0.03 
(0.03) 

0.37 0.04 
(0.03) 

0.22 0.02 
(0.03) 

0.44 0.03 
(0.03) 

0.26 

Predicted 
European 
appearance 

0.34 
(0.02) 

<0.01 0.25 
(0.03) 

<0.01 0.15 
(0.03) 

<0.01 0.03 
(0.04) 

0.41 0.01 
(0.03) 

0.72 

Child US Born 0.05 
(0.08) 

0.55 0.05 
(0.08) 

0.54 0.13 
(0.08) 

0.09 0.07 
(0.08) 

0.37 0.14 
(0.08) 

0.07 

Immigrant 
Family 

0.25 
(0.04) 

<0.01 0.20 
(0.04) 

<0.01 0.12 
(0.04) 

0.04 0.22 
(0.04) 

<0.01 0.14 
(0.04) 

0.01 

Frac Black  -0.31 
(0.07) 

<0.01 -0.23 
(0.07) 

0.02 0.08 
(0.08) 

0.36 0.02 
(0.08) 

0.83 

Frac Native 
American  

-0.10 
(0.12) 

0.40 -0.05 
(0.11) 

0.66 -0.07 
(0.12) 

0.58 -0.03 
(0.11) 

0.78 

Frac NOC  -0.19 
(0.06) 

0.01 -0.07 
(0.05) 

0.18 -0.07 
(0.06) 

0.23 -0.00 
(0.05) 

0.93 

Hispanic -0.05 
(0.06) 

0.38 -0.01 
(0.05) 

0.86 -0.04 
(0.06) 

0.45 -0.01 
(0.05) 

0.86 

SES 0.35 
(0.02) 

<0.01 0.32 
(0.02) 

<0.01 

European 
ancestry 

1.24 
(0.13) 

<0.01 0.79 
(0.12) 

<0.01 

Random Effects  

σ2 0.52 0.52 0.51 0.51 0.51 

τ00 0.52 site_id_l:rel_f

amily_id

0.52 site_id_l:rel_f

amily_id

0.43 site_id_l:rel_fa

mily_id

0.50 site_id_l:rel_fa

mily_id

0.43 site_id_l:rel_f

amily_id

0.02 site_id_l 0.02 site_id_l 0.04 site_id_l 0.02 site_id_l 0.04 site_id_l 

ICC 0.51 0.51 0.48 0.51 0.48 

N 22 site_id_l 22 site_id_l 22 site_id_l 22 site_id_l 22 site_id_l 

3863 rel_family_id 3863 rel_family_id 3863 rel_family_id 3863 rel_family_id 3863 rel_family_id 

Observation
s 

4459 4459 4459 4459 4459 

Marginal 
R2 / 
Conditional 
R2 

0.085 / 0.549 0.095 / 0.556 0.180 / 0.571 0.116 / 0.565 0.187 / 0.574 

Notes: Beta coefficients (b) and p-values (p) from the mixed-effects models, with recruitment site and 
family common factors treated as random effects are shown. The values in parentheses are standard 
errors. The marginal and conditional R2 of the mixed effects model are shown at the bottom. ICC = 
Intraclass Correlation Coefficient.      

Table 7. Tobit regression results for the effect of predicted European appearance on 
grades in the Black-Hispanic-Other sample.  

M1: Grades ~ 
European 
appearance 

M2: Grades ~ 
European 
appearance + 
SIRE 

M3: Grades ~ 
European 
appearance + 
SIRE + SES 

M4a: Grades ~ 
European 
appearance + 
SIRE + 
European 
ancestry 

M4b: Grades ~ 
European 
appearance + 
SIRE + European 
ancestry + SES 

Predictors b P b p b P b P b P 
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Age -0.03 
(0.03) 

0.27 -0.03 
(0.03) 

0.30 -0.04 
(0.03) 

0.24 -0.03 
(0.03) 

0.34 -0.03 
(0.03) 

0.25 

Sex 0.29 
(0.04) 

<0.01 0.29 
(0.04) 

<0.01 0.29 
(0.04) 

<0.01 0.29 
(0.04) 

<0.01 0.29 
(0.04) 

<0.01 

European 
appearance 

0.21 
(0.02) 

<0.01 0.20 
(0.03) 

<0.01 0.12 
(0.03) 

<0.01 0.10 
(0.04) 

0.01 0.09 
(0.04) 

0.04 

Child US Born -0.07 
(0.10) 

0.50 -0.08 
(0.10) 

0.43 -0.03 
(0.10) 

0.77 -0.07 
(0.10) 

0.47 -0.03 
(0.10) 

0.78 

Immigrant 
Family 

0.07 
(0.04) 

0.12 0.08 
(0.05) 

0.12 0.03 
(0.05) 

0.55 0.09 
(0.05) 

0.08 0.03 
(0.05) 

0.49 

Frac Black 
SIRE 

0.00 
(0.09) 

0.99 0.05 
(0.09) 

0.54 0.16 
(0.10) 

0.11 0.11 
(0.10) 

0.25 

Frac Native 
American 
SIRE 

0.12 
(0.14) 

0.36 0.15 
(0.13) 

0.27 0.13 
(0.14) 

0.33 0.15 
(0.13) 

0.26 

Frac NOC 
SIRE 

-0.13 
(0.07) 

0.06 -0.06 
(0.07) 

0.40 -0.08 
(0.07) 

0.23 -0.04 
(0.07) 

0.55 

Hispanic 0.03 
(0.07) 

0.62 0.07 
(0.07) 

0.27 0.04 
(0.07) 

0.55 0.07 
(0.07) 

0.26 

SES 0.22 
(0.02) 

<0.01 0.22 
(0.02) 

<0.01 

European 
ancestry 

0.50 
(0.15) 

0.01 0.19 
(0.15) 

0.20 

Observations 3814 3814 3814 3814 3814 

R2 Nagelkerke 0.056 0.058 0.089 0.061 0.089 

Notes: Beta coefficients (b) and p-values (p) from the tobit models, with recruitment site (not shown) 
added as dummy variables. The values in parentheses are standard errors. 

Table 8, Model 1 shows the alternative 
multi-level regression results. For these, 
when we add genetic ancestry in Models 4a 
and 4b (with SES), the relation becomes 
statistically non-significant, although the 
model approaches statistical significance 
in the case of 4a (without SES) (p = 0.06). 
The results for the Black-Hispanic-Other-
White sample, provided in the 
supplementary material, show no 
statistically significant effect of European 

appearance in Model 4a (without SES) and 
4b (with SES). The discrepancy between 
the tobit and multilevel regression results 
could be due to not including random 
effects in the latter or due to censoring-
related bias in the former. Regardless, the 
betas for both 4b models are fairly similar 
(b = .09 vs. b = .06) and suggest some 
unaccounted-for European appearance-
related effect on parent-reported student 
grades.   

 Table 8. Mixed-effects regression results for the effect of predicted European 
appearance on grades in the Black-Hispanic-Other Sample.  

M1: Grades 
~ European 
appearance 

M2: Grades 
~ European 
appearance 
+ race and 
ethnicity 

M3: Grades 
~ European 
appearance 
+ race and 
ethnicity + 
SES 

M4a: Grades 
~ European 
appearance + 
race and 
ethnicity + 
European 
ancestry 

M4b: Grades ~ 
European 
appearance + 
race and 
ethnicity + 
European 
ancestry + SES 



Natural Systems of Mind, 2023, Volume 3, № 1, p. 23 -49. 
___________________________________________________________

41

Predictors b P b P b P b P b P 

(Intercept) 0.45 
(0.29) 

0.11 0.42 
(0.29) 

0.15 0.46 
(0.29) 

0.11 -0.03 
(0.31) 

0.93 0.26 
(0.31) 

0.40 

Age -0.06 
(0.03) 

0.03 -0.06 
(0.03) 

0.04 -0.06 
(0.03) 

0.0
2 

-0.05 
(0.03) 

0.04 -0.06 
(0.03) 

0.02 

Sex 0.34 
(0.03) 

<0.0
1 

0.34 
(0.03) 

<0.0
1 

0.34 
(0.03) 

<0.
01 

0.34 
(0.03) 

<0.0
1 

0.34 
(0.03) 

<0.01 

Predicted 
European 
appearance 

0.19 
(0.02) 

<0.0
1 

0.17 
(0.03) 

<0.0
1 

0.10 
(0.03) 

0.0
1 

0.08 
(0.04) 

0.06 0.06 
(0.04) 

0.13 

Child US 
Born 

-0.15 
(0.09) 

0.10 -0.17 
(0.09) 

0.07 -0.11 
(0.09) 

0.2
4 

-0.15 
(0.09) 

0.09 -0.10 
(0.09) 

0.26 

Immigrant 
Family 

0.04 
(0.04) 

0.36 0.04 
(0.05) 

0.38 -0.02 
(0.05) 

0.6
2 

0.05 
(0.05) 

0.27 -0.02 
(0.05) 

0.73 

Frac Black -0.00 
(0.08) 

0.97 0.05 
(0.08) 

0.5
4 

0.16 
(0.09) 

0.08 0.12 
(0.09) 

0.19 

Frac Native 
American 

0.03 
(0.13) 

0.81 0.07 
(0.12) 

0.6
0 

0.04 
(0.13) 

0.74 0.07 
(0.12) 

0.58 

Frac NOC -0.20 
(0.06) 

0.01 -0.13 
(0.06) 

0.0
3 

-0.14 
(0.06) 

0.02 -0.11 
(0.06) 

0.07 

Hispanic 0.05 
(0.06) 

0.40 0.07 
(0.06) 

0.2
6 

0.06 
(0.06) 

0.34 0.07 
(0.06) 

0.24 

SES 0.22 
(0.02) 

<0.
01 

0.21 
(0.02) 

<0.01 

European_
ancestry 

0.53 
(0.14) 

<0.0
1 

0.23 
(0.14) 

0.10 

Random Effects 

σ2 0.76 0.75 0.75 0.75 0.75 

τ00 0.32 site_id_l:re

l_family_id

0.32 site

_id_l:rel_fa

mily_id

0.29 site_id_l:rel_famil

y_id

0.32 site_id_l:r

el_family_id

0.29 site_id_l:rel_fa

mily_id

0.01 site_id_l 0.01 site_

id_l

0.00 site_id_l 0.01 site_id_l 0.00 site_id_l 

ICC 0.30 0.30 0.28 0.30 0.28 

N 22 site_id_l 22 site_id

_l

22 site_id_l 22 site_id_l 22 site_id_l 

3296 rel_family

_id

3296 rel

_family_id

3296 rel_family_id 3296 rel_family

_id

3296 rel_family_id 

Observations 3814 3814 3814 3814 3814 

Marginal R2 / 
Conditional R2 

0.048 / 
0.338 

0.051 / 
0.339 

0.086 / 0.339 0.056 / 
0.343 

0.087 / 0.340 

Notes: Beta coefficients (b) and p-values (p) from the mixed-effects models, with recruitment site and 
family common factors treated as random effects, are shown. The values in parentheses are standard 
errors. The marginal and conditional R2s of the mixed-effects model are shown at the bottom. ICC = 
Intraclass Correlation Coefficient.  
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We additionally computed the values of 
variance inflation factors (VIFs), which 
measure the amount 
of multicollinearity in a regression 
analysis. In cases of high multicollinearity, 
it can be difficult to distinguish between 
the effects of individual independent 
variables owing to high correlations 
among these. The full results for these tests 
for excessive multicollinearity are 
provided in Tab 5 of the supplementary 
file. For the Black-Hispanic-Other sample, 
the values of VIFs for predicted European 
appearance in Models 4a to 4b of Tables 6-
8 ranged from 2.9 to 3.6. For the Black-
Hispanic-Other-White sample, VIFs for 
predicted European appearance ranged 
from 4.0 to 4.6. Usually, a VIF value > 5 or, 
less strictly, > 10 is said to be problematic 
(James et al., 2013), but the values found 
here for European appearance are lower 
than these commonly-used thresholds, 
indicating that multicollinearity is not 
likely to be confounding our results. We 
also ran the models dropping the 
frac_SIRE variables, which, in the 

presence of European appearance, were 
leading to collinearity with European 
ancestry. As expected, doing so decreased 
the values of VIFs for European ancestry 
but did not substantially change the 
results. 

3.3. Mediation analysis 
 The results from the causal 

mediation analyses are summarized in 
Table 9. The full results are provided in 
Tab 6 of the supplementary file. In both 
the Black-Hispanic-Other and the Black-
Hispanic-Other-White samples, g was a 
substantial and statistically significant 
mediator of the relation between genetic 
ancestry and grades. In contrast, g was not 
a statistically significant mediator of the 
relation between European appearance 
and grades. In the Black-Hispanic-Other 
sample, European appearance had a 
significant total effect on grades (p = .03) 
with the same magnitude of effect as in 
Model M4a of table 7. Nonetheless, g was 
not a statistically significant mediator of 
the relation between predicted European 
appearance and grades.

Table 9. Summary of the causal mediation results for the full sample and race and 
ethnicity subsamples. 

Method: LMER 
Predictor Mediato

r 
Criterio
n 

Mediation Effect Proportion 
of total effect 
mediated 

N 

    Black-Hispanic-Other  
Predicted European 
appearance g grades 

0.02 [ -0.01, 
0.05] 0.26 4459 

European Ancestry g grades 
0.53 [ 0.41, 
0.66] 1.03 3814 

  Black-Hispanic-Other-White 

Predicted European 
appearance g grades 

0.01 [-0.01, 
0.03] 0.25 

1037
0 

European Ancestry g grades 0.61  [0.53, 0.71] 0.75 9128 

Method: LM-Tobit 

Predictor 
Mediato
r 

Criterio
n Mediation Effect 

Proportion  
of total 
effect mediated N 

 Black-Hispanic-Other 

Predicted European 
appearance g grades 

0.02 [ -0.01, 
0.06] 0.24 4459 
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European Ancestry g grades 
0.54 [ 0.43, 
0.67] 1.12 3814 

 Black-Hispanic-Other-White 

Predicted European 
appearance g grades 

0.01 [-0.01, 
0.02] 0.25 

1037
0 

European Ancestry g grades 
0.52  [0.44, 
0.60] 0.83 9128 

Notes: Statistically significant results (p < 0.05) are presented in bold. 

3.4 Robustness analyses 
As a robustness check, we reran the 

main regression analyses using the UKBB 
tanning and the HIrisPlex skin color 
variables instead of European appearance. 
These results are reported in Tab 8 and 
Tab 9 of the supplementary file. Neither 
the effects of UKBB tanning nor the effects 
of HIrisPlex skin color were close to 
significant for g or grades. So, using a 
composite indicator of hair, eye, and skin 
tanning/color instead of skin 
tanning/color alone did not decrease the 
effects. Rather, effects, particularly for 
grades, were stronger when using the 
European appearance predictor.  

Next, we reran the main analyses on 
both the Hispanic (n = 2021 to 1741) and 
non-Hispanic Black (n = 1690 to 1432) 
subsamples. These results are shown in 
Tab 10 of the supplementary file. Again, 
European appearance, tanning, and color 
were not significantly related to either g or 
grades in the Hispanic and Black 
subsamples.   

Additionally, we ran the analyses on all 
eleven cognitive subtests used to create g 
scores in addition to the NIHTBX fluid and 
crystallized composite scores. These 
results, for the Black-Hispanic-Other 
sample, are shown in Tab 13 of the 
supplementary file. We found statistically 
significant results only for the Picture 
Vocabulary test (b = 0.097; S.E. = .033), 
but not the other crystallized test, namely 
Oral Reading Recognition (b = 0.000; S.E. 
= .034). We also found marginally 
significant results for the crystallized 
composite scores (b = 0.068; S.E. = .033), 
which were due to the highly significant 
results for Picture Vocabulary, since the 
crystallized composite was derived from 
the Picture Vocabulary and Oral Reading 

Recognition tests. These results for 
crystallized composite scores and for 
Picture Vocabulary scores could represent 
a real effect, since it seems more likely that 
appearance-based discrimination would 
be present on a measure of knowledge and 
crystallized cognitive ability than fluid 
ability. Alternatively, this could represent 
a coincidence due to multiple testing (i.e., 
looking at the effects on eleven 
independent measures).  

Finally, we tested for possible cross-
trait assortative mating by examining if 
eduPGS scores predicted European 
appearance independent of European 
ancestry. These results are shown in Tab 11 
of the supplementary file. We did not find 
significant associations between eduPGS 
and European appearance independent of 
European ancestry, which is inconsistent 
with the cross-trait assortative mating 
hypothesis.  

4. Conclusion
4.1. Discussion 
The colorism model states that there is 

ongoing discrimination based on physical 
appearance in the Americas, which 
contributes to the link between European 
phenotype and better social outcomes. 
This model predicts that European 
appearance, regardless of ancestry, will 
have a positive impact on academic 
outcomes. We tested the colorism model 
using the admixture-regression 
methodology. Specifically, we 
hypothesized, first, that European 
appearance would be related to g when 
taking into account genetic ancestry, and 
second, that European appearance would 
have a relationship with grades 
independent of genetic ancestry. However, 
we found no substantial evidence to 
support the first hypothesis and only 
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limited evidence to support the second. As 
a result, our findings do not strongly 
support the colorism hypothesis. 

Additionally, due to meta-analyses 
showing a significant connection between 
g and grades, we formulated two more 
hypotheses: third, that g would play a role 
in the relationship between European 
ancestry and grades, and fourth, that g 
would play a role in the relationship 
between European appearance and grades. 
Our findings provided strong evidence for 
the third hypothesis, but not for the fourth 
hypothesis. This suggests that the 
relationship between European ancestry 
and grades is dependent on g, while the 
relationship between European 
appearance and grades is not dependent 
on g. 

We conducted several robustness tests.  
When we used tanning or color, instead of 
European appearance, as the main 
predictor, we did not find any significant 
statistical connections between these two 
variables and either g or grades. Moreover, 
we did not find statistically significant 
associations when subsetting to the two 
largest admixed groups, Hispanics and 
Blacks. The lack of an association between 
either tanning or color and academic 
outcomes further weakens a colorism 
model, since this model places primacy on 
“the causal role of skin tone in engendering 
the colorism phenomenon” (Marira & 
Mitra, 2013, p. 103). So, we conclude that 
the outcomes are robust, and that the 
results of the robustness tests did not 
support a colorism model. 

Across 15 outcome measures (g, grades, 
eleven subtests, the fluid ability composite, 
and the crystallized ability composite), 
three traits (European appearance, UKBB 
tanning, and HIrisPlex skin color), and 
four groupings (Black-Hispanic-Other-
White, Black-Hispanic-Other, Black, and 
Hispanic) we found three statistically 
significant results, two of which were 
redundant (i.e., the effect on Crystalized 
intelligence resulted from the effect on 
Picture Vocabulary). Given that 15 
different overlapping academic outcomes 
were examined across three traits, these 

results could simply be chance results due 
to multiple testing. Moreover, the 
interpretation of the results for grades is 
complicated since the grades were parent-
reported, not actual school-reported 
grades, and since the parent-reported 
grades were very course (e.g., mostly As, 
mostly Bs, mostly Cs, etc.).  

On the other hand, the three 
statistically significant results may make 
theoretical sense. Theorists of colorism 
have argued that colorism will manifest as 
a barrier to learning opportunities 
(Thompson & McDonald, 2016) and 
optimal education (Crutchfield et al., 
2022), acting against less European-
appearing students. On this basis, it is 
reasonable to hypothesize that the effects 
would be larger on crystalized abilities and 
outcomes dependent on teachers’ 
judgment. Therefore, future research 
should attempt to evaluate whether there 
are robust European-appearance effects 
on measures of crystalized ability and 
grades.  

Regarding the general lack of 
association with respect to cognitive 
ability, one could perhaps argue that 
global genetic ancestry is a better predictor 
of overall racial appearance. Accordingly, 
discrimination might be based on an 
overall assessment of morphological 
differences, not just conspicuous race-
associated differences in skin, eye, and 
hair color. However, this is somewhat 
different from what “colorists” have 
narrowly hypothesized, hence the term 
“colorism”. If race-associated 
discrimination is said to be based on 
ancestry-indexing phenotypes, then 
perhaps a good alternative term might be 
“ancestrysim”. It is not clear, though, why 
discrimination would be finely tuned to 
overall phenotypic markers of genetic 
ancestry instead of features that are 
stereotypic of racial groups.  

A more likely explanation for these 
findings is that color is associated with 
cognitive ability predominantly because 
the color phenotype proxies global 
ancestry. Global ancestry could be related 
to how differences in these characteristics 
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are inherited or passed on from parents to 
children along genealogical lines. Several 
researchers have argued that genetic 
ancestry might index social disparities 
intergenerationally transmitted for 
cultural, genetic, or epigenetic reasons 
(Corach & Caputo, 2022; da Silva et al., 
2020; Fuerst & Kirkegaard, 2016). This 
possibility has largely been not discussed 
by sociologists who have focused instead 
on discriminatory or diffuse cultural 
models concerning disparities by caste, 
nation, ethnicity, or race. Our results 
suggest that researchers should also focus 
on genetic ancestry and identifying the 
specific genetic, epigenetic, and cultural 
factors which mediate the 
intergenerational transmission of 
academic outcomes. 

4.2. Limitations 
One could argue that our genetic 

predictor of European appearance is not 
perfectly reliable. However, frequently 
used skin tone scales, such as the Massey 
and Martin (2003) scale, have been found 
to have low reliabilities (Hannon & 
DeFina, 2016; 2020), so we would argue, 
based on our own results, that our 
genetically-predicted European 
appearance scores appear to be more 
reliable than the sorts of color measures 
which are typically used. A genetic-based 
predictor of color captures phenotype over 
an individual’s lifetime without the 
variability due to the low reliability of 
interviewer rating skin tone scales which 
have been found to be influenced by 
interviewer-rated characteristics such as 
race/ethnicity (Campbell et al., 2020; 
Cernat et al., 2019) or the interviewer’s 
perceptions about the participants 
socioeconomic status (Roth et al., 2022). 
So, we conclude that a genetic predictor of 
European appearance is preferable to 
interviewer-rated skin tone.  

It is possible that there are substantial 
ancestry-independent associations 
between color and academic outcomes in 
other populations or for other academic 
traits. The novel admixture-regression 
method described here can be used to 
investigate if this is the case. 

4.3 Implications 
We focused on Hispanic, Black, Other, 

and White Americans. This is because, 
according to Marira and Mitra (2013, p. 
104), “the most rigorous research 
concerning the nexus of colorism and 
labor market outcomes has been 
conducted on African American and 
Latino populations in the United States”. 
Given that the best support for colorism is 
said to come from the study of Black and 
Hispanic Americans, we would have 
expected the association between 
European appearance/color and academic 
outcomes to be robust in this sample. 
However, we did not find this to be the 
case, which weakens the colorism 
hypothesis.  

4.4. Conclusions 
We found little support for the colorism 

hypothesis. Our results suggest that the 
relationship between racial appearance 
and academic outcomes cannot be 
considered as prima facie evidence of 
discrimination, as genetic ancestry, and 
the inherited disadvantage associated with 
it, is a plausible confounding variable. In 
future studies on colorism, it is 
recommended to consider genetic ancestry 
as a factor in the analyses. Because 
discrimination is such an important topic, 
it is essential that more studies are carried 
out before we are able to draw strong 
conclusions. 
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Highlights: Admixture-regression 
analysis is a powerful tool that can be used 
to test the colorism hypothesis.   

▪ We test the colorism hypothesis
that academic outcome differences in the 
USA are due to phenotypic-based 
discrimination.  

▪ The results generally do not
support the colorism hypothesis and are 
more congruent with the hypothesis of 
inherited disadvantage according to which 
disadvantages are being 
intergenerationally transmitted. 
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